$\square ⿴ 囗$
 ALL INDIA TEST SERIES

JEE (Main) - 2020
 Batch - 2001+2002+2003+2005+2007

 PART TEST - 3

 PART TEST - 3}

Time : 3 Hours
Maximum Marks : 300

Syllabus Covered

Physics : Rotation, Transient current, Alternative current.
Chemistry : Equilibrium I \& II, Gaseous state, Hydrocarbons.
Mathematics : Indefinite Integration, Definite Integration, Area, Differential Equation.

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose. You are not allowed to leave the Examination Hall before the end of the test.

INSTRUCTIONS

A. General :

This booklet is your Question Paper containing 75 questions.
The Question Paper CODE \& TEST ID is printed on the right hand top corner of this booklet. This should be entered on the OMR Sheet.
Fill the bubbles completely and properly using a Blue/Black Ball Point Pen only.
No additional sheets will be provided for rough work.
Blank papers, clipboards, log tables, slide rules, calculators, cellular phones, pagers, and electronic gadgets in any form are not allowed to be carried inside the examination hall.
6. The answer sheet, a machine-readable Optical mark recognition sheet (OMR Sheet), is provided separately.
7. DO NOT TAMPER WITH / MUTILATE THE OMR OR THE BOOKLET.
8. Do not break the seals of the question-paper booklet before being instructed to do so by the invigilator.
B. Question paper format \& Marking Scheme :
9. The question paper consists of 3 parts (Physics, Chemistry and Mathematics).
10. Section I contains 20 questions. Each question has 4 choices $(A),(B),(C)$ and (D), for its answer, out of which ONLY ONE is correct. Each question carries +4 marks for correct answer and -1 mark for wrong answer.
11. Section II contains 5 questions. The answer to each question is a NUMERICAL VALUE. Each question carries +4 marks for correct answer. In all other cases zero (0) mark will be awarded for incorrect answer in this section.

Name of the Candidate (in Capitals) \qquad
Test Centre \qquad -

Centre Code

\qquad
\qquad _ \qquad

PART - I PHYSICS

SECTION 1 (Maximum Marks: 80)

This section contains TWENTY (20) questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which
ONLY ONE is correct. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.

1. From a disc of radius R and mass M, a circular hole of diameter R , whose rim passes through the centre is cut. What is the moment of inertia of remaining part of the disc about a perpendicular axis, passing through the centre?
(a) $\frac{13}{32} M R^{2}$
(b) $\frac{11}{32} M R^{2}$
(c) $\frac{9}{32} M R^{2}$
(d) $\frac{15}{32} M R^{2}$
2. A wire of length l and mass M is bent in the form of a circular ring. The moment of inertia about its axis is
(a) $\frac{M l^{2}}{8 \pi^{2}}$
(b) $8 \pi^{2} M L^{2}$
(c) $\frac{M l^{2}}{4 \pi^{2}}$
(d) $4 \pi^{2} M L^{2}$
3. A particle moves so that its position vector is given by $\vec{r}=\cos \omega t \hat{x}+\sin \omega t \hat{y}$, where ω is a constant. Which of the following is true?
(a) velocity and acceleration both are perpendicular to \vec{r}
(b) velocity and acceleration both are parallel to \vec{r}
(c) velocity is perpendicular to \vec{r} and acceleration is directed towards the origin
(d) velocity is perpendicular to \vec{r} and acceleration is directed away from the origin
4. Two discs of moment of inertia l_{1} and l_{2} and angular speeds ω_{1} and ω_{2} are rotating along collinear axes passing through their c.m. and perpendicular to their plane. If the two are made to rotate combined along the same axis the rotational KE of system will be
(a) $\frac{l_{1} \omega_{1}+l_{2} \omega_{2}}{2\left(l_{1}+l_{2}\right)}$
(b) $\frac{\left(l_{1}+l_{2}\right)\left(\omega_{1}+\omega_{2}\right)}{2}$
(c) $\frac{\left(l_{1} \omega_{1}+l_{1} \omega_{2}\right)^{2}}{2\left(l_{1}+l_{2}\right)}$
(d) none of these
5. The moments of inertia of two freely rotating bodies A and B are I_{A} and I_{B} respectively. $I_{A}>I_{B}$ and their angular momenta are equal. If K_{A} and K_{B} are their kinetic energies, then
(a) $K_{A}=K_{B}$
(b) $K_{A}=K_{B}$
(c) $K_{A}<K_{B}$
(d) $K_{A}=2 K_{B}$
6. A uniform rod of length l and mass m us free to rotate in a vertical plane about A. The rod initially in horizontal position is released. The initial angular acceleration of the rod is
(a) $\frac{m g l}{2}$
(b) $\frac{3 g}{2 l}$
(c) $\frac{2 l}{3 g}$
(d) $\frac{3 g}{2 l^{2}}$
7. A solid sphere rolls down two different inclined plane of same height, but of different inclinations. In both cases
(a) speed and time of descent will be same
(b) speed will be same, but time of descent will be different
(c) speed will be different, but time of descent will be same
(d) speed and time of descent both are different
8. A sphere of mass m and radius r rolls on a horizontal plane without slipping with the speed u. Now it rolls up vertically. The maximum height it would attain will be
(a) $3 u^{2} / 4 g$
(b) $5 u^{2} / 2 g$
(c) $7 u^{2} / 10 g$
(d) $11 u^{2} / 9 g$
9. The r.m.s. value of $i=I_{1} \sin \omega t+I_{2} \cos \omega r$ is
(a) $\frac{I_{1}+I_{2}}{2}$
(b) $\sqrt{\frac{I_{1}^{2}+I_{2}^{2}}{2}}$
(c) $\frac{\sqrt{I_{1}^{2}+I_{2}^{2}}}{2}$
(d) $\frac{I_{1}-I_{2}}{2}$
10. An AC source has voltage and time variation is SI units given by $V=120 \sin (100 \pi t) \cos (100 \pi t)$. The maximum voltage and frequency are
(a) $120, \mathrm{~V}, 100 \mathrm{~Hz}$
(b) $\frac{120}{\sqrt{2}} \mathrm{~V}, 100 \mathrm{~Hz}$
(c) $60 \mathrm{~V}, 200 \mathrm{~Hz}$
(d) $60 \mathrm{~V}, 100 \mathrm{~Hz}$
11. The r.m.s. value of potential differential V shown in Fig. is
(a) V_{0}
(b) $V_{0} / 2$
(c) $V_{0} / \sqrt{2}$

(d) $V_{0} / \sqrt{3}$
12. The value of conductance in the adjoining circuit shown in Fig. is
(a) 0.1 mho
(b) 0.025 mho
(c) 0.103 mho

(d) 9.7 mho
13. In the circuit shown in Fig. what will be the reading of the voltmeter?
(a) 300 V
(b) 900 V
(c) 200 V
(d) 400 V

14. If the current in an inductor is tripled, by what factor does the stored energy change?
(a) 4.5
(b) 2
(c) $\frac{1}{9}$
(d) 9
15. Power dissipated in an LCR series circuit connected to an A.C. source of emf ε is
(a) $\frac{\varepsilon^{2} \sqrt{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}}}{R}$
(b) $\frac{\varepsilon^{2}\left[\sqrt{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}}\right]}{R}$
(c) $\frac{\varepsilon^{2} R}{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}}$
(d) $\frac{\varepsilon^{2} R}{\sqrt{\left[R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}\right]}}$
16. If a direct current of a units is superimposed with an alternating current $I=b \sin \omega t$, then the effect value of resulting current is
(a) $\left(a^{2}+b^{2}\right)^{1 / 2}$
(b) $\left(\frac{a^{2}+b^{2}}{2}\right)^{1 / 2}$
(c) $\left(a^{2}+\frac{b^{2}}{2}\right)^{1 / 2}$
(d) $\left(\frac{a^{2}}{2}+b^{2}\right)^{1 / 2}$
17. In the circuit shown here readings of voltmeters V_{1}, V_{2}, V_{3} at resonance are given by
(a) $V_{1}=V_{2}=V_{3}=E_{0}$
(b) $V_{1}=V_{3}=\frac{E_{0}}{\sqrt{2}}, V_{2}=0$
(c) $V_{1}=V_{3}=E_{0}, V_{2}=0$
(d) $V_{1}=\frac{E_{0}}{\sqrt{2}}, V_{2}=V_{3}=0$

18. In the circuit shown in Fig. the key K is closed at $t=0$. The current through the battery is
(a) $\frac{V}{R_{2}}$ at $t=0$ and $\frac{V\left(R_{1}+R_{2}\right)}{R_{1} R_{2}}$ at $t=\infty$
(b) $\frac{V}{R_{2}}$ at $t=0$ and $\frac{V R_{1} R_{2}}{\sqrt{R_{1}^{2}+R_{2}^{2}}}$ at $t=\infty$
(c) $\frac{V R_{1} R_{2}}{R_{1} R_{2}}$ at $t=0$ and $\frac{V}{R_{2}}$ at $t=\infty$
(d) $\frac{V R_{1} R_{2}}{\sqrt{R_{1}^{2}+R_{2}^{2}}}$ at $t=0$ and $\frac{V}{R_{2}}$ at $t=\infty$
19. The alternating current I in an in inductance coil varies with time according to graph given in fig. Which one of the following graphs, fig gives the variation of voltage with time?

20. In the circuit shown in Fig. the supply has a constant rms value V but variable frequency f. The frequency at which the voltage drop across R is maximum is:
(a) 100 Hz
(b) 300 Hz
(c) 500 Hz
(d) None of these

SECTION 2 (Maximum Marks: 20)

This section contains FIVE (05) questions. The answer to each question is a NUMERICAL VALUE. Each question carries +4 marks for correct answer. In all other cases zero (0) mark will be awarded for incorrect answer in this section.
21. A wheel has angular acceleration of $3.0 \mathrm{rad} / \mathrm{sec}$. In a time of 2 sec it has rotated through an angle (In radian) of
22. Two strings are tied 2 m apart on a rod and on the other end, a mass 200 g is tied as shown in fig. Each string is 1.25 m long. Find the tensions T_{1}, if the mass is rotated with 60 rpm about the rod.

23. An inductive circuit contains a resistance of 10 ohm and an inductance of 2.0 henry. If an ac voltage of 120 volt and frequency of 60 Hz is applied to this circuit, the current in the circuit would be nearly.
24. A coil of $R=10 \Omega$ and $L=5 H$ is connected to a 100 V battery, then energy stored is
25. An inductor 20 mH , a capacitor $100 \mu F$ and a resistor 50Ω are connected in series across a source of emf. $V=10 \sin 314 t$. The power loss in the circuit is

PART - II CHEMISTRY

SECTION 1 (Maximum Marks: 80)

This section contains TWENTY (20) questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONLY ONE is correct. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
26. In the following diagram, the chamber is treated with anhydrous CaCl_{2} to remove all moisture. Now, a watch glass is introduced that has a small quantity of water in it. What will be observed in the manometer?
(a) Hg will rise in L side
(b) Hg will rise in R side
(c) Hg will rise in both L and R sides

(d) Hg will remain where it is
27. Which of the following facts are correct for the plot shown below for

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) ?
$$

(a) Right part shows decomposition of $\mathrm{HI}(\mathrm{g})$ to produce $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{I}_{2}(\mathrm{~g})$.
(b) Left part shows reaction of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{I}_{2}(\mathrm{~g})$ to produce $\mathrm{HI}(\mathrm{g})$.

(c) Equilibrium can be attained from both sides.
(d) All of the above
28. For the reversible reaction

$$
\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}
$$

(I) Guldberg and Waage gave equilibrium equation:

Eqm. Constt. $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}$
(II) $\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}$ is called equilibrium constant expression
(III) For the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}(\mathrm{~g})\right]^{2}}{\left[\mathrm{~N}_{2}(\mathrm{~g})\right]\left[\mathrm{H}_{2}(\mathrm{~g})\right]^{3}}
$$

Select the correct choice :
(a) only (I) is correct
(b) (I) and (III) both are correct
(b) (I) and (III) both are correct
(d) (I), (II) and (III) all are correct
29. $\mathrm{PCl}_{5}, \mathrm{PCl}_{3}$ and Cl_{2} are at equilibrium at 500 K and having concentrations $1.59 \mathrm{M} \mathrm{PCl}_{3}, 1.59 \mathrm{M} \mathrm{Cl}_{2}$ and $1.41 \mathrm{MPCl}_{5} . \mathrm{K}_{\mathrm{c}}$ for the reaction,

$$
\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2} \text {, is: }
$$

(a) 9.17
(b) 1.79
(c) 7.19
(d) 9.71
30.

Rearranged alkene product after rearrangement will be (mainly) -
(a)

(b)

(c)

(d)

31. Select the correct choice for the following rules I, II and III. At equilibrium :
I. $\mathrm{K}_{\mathrm{c}}>10^{3} \Rightarrow$ Products are negligible
II. $\mathrm{K}_{\mathrm{c}}<10^{-3} \Rightarrow$ Reactants are negligible
III. $10^{-3}<\mathrm{K}<10^{3} \Rightarrow$ Reactants and products both are present in considerable quantities.
(a) I and II both are correct
(b) only III is correct
(c) All of these are correct
(d) All of these are not correct
32. Which of the following statements (I), (II) and (III) is/are correct?
(I) When $\Delta \mathrm{G}$ is negative, the driving force makes the reaction go forward.
(II) When $\Delta \mathrm{G}$ is positive, the forward reaction is not possible. Instead $\Delta \mathrm{G}$ will have negative value for the reverse reaction and products will give back the reactants.
(III) When $\Delta \mathrm{G}$ is zero, the reaction has no energy left to drive the forward or reverse reaction, i.e., the reaction is at equilibrium.
(a) Only (I) is correct
(b) Only (III) is correct
(c) (I) and (II) both are correct
(d) (I), (II) and (III) all are correct
33. Keeping all conditions constant which of the following will increase the yield of NH_{3} ?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

(a) Increase the amount of $\mathrm{N}_{2}(\mathrm{~g})$
(b) Increase the amount of $\mathrm{H}_{2}(\mathrm{~g})$
(c) Decrease the amount of $\mathrm{NH}_{3}(\mathrm{~g})$
(d) All of the above
34. Acetic acid is only about 5% dissociated in water. H^{+}and $\mathrm{CH}_{3} \mathrm{COO}^{-}$ions are in equilibrium with undissociated molecules of $\mathrm{CH}_{3} \mathrm{COOH}$

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})
$$

Such equilibria are known as :
(a) chemical equilibria
(b) ionic equilibria
(c) physical equilibria
(d) all (a), (b) and (c)
35. In the reaction

(a)

(b)

(c)

(d)

36. Solids and liquids resist compression because :
(a) molecules are already very close.
(b) inter electronic forces do not allow the molecules of solids and liquids to come further close.
(c) inter-nuclear repulsive forces do not allow the molecules to come still more closer
(d) all of the above
37. Which of the following statements is correct?
(a) Gaseous state is the simplest state of matter.
(b) The part of atmosphere, we live in, contains $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{CO}_{2}$, etc.
(c) The thin layer of atmosphere, we live in, protects us from harmful radiations.
(d) All of the above are correct.
38. Which of the following graph(s) represent(s) Boyle's law?
(a)

(b)

(c)

(d) All of these
39. With reference to the graph which is/are not correct?
(I) (1) shows real gas and +ve deviation.
(II) (2) shows ideal gas behaviour.
(III) (3) shows super ideal gas behaviour. Negative deviation at high pressure and positive deviation at low temperature.

(a) (I) and (II)
(b) Only (I)
(c) Only (II)
(d) Only (III)
40.

(a) $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CH}_{3}$
(b)

(c)

(d)

41. The product of reaction between 1,1,2,2-tetrachloro propane and Zn dust $/ \Delta$ -
(a) Propyne
(b) Propene
(c) Iso propene
(d) Acetylene
42. What are' A^{\prime} and' B^{\prime} as major compounds in the following reaction?

$$
\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3} \underset{\text { Anhyd. } \mathrm{AlCl}_{3} / \mathrm{HCl} / 35 \mathrm{~atm} / 25^{\circ} \mathrm{C}}{\stackrel{\text { Anhyd } \mathrm{AlCl}_{3} / \mathrm{HCl} / 35 \mathrm{~atm} / 400^{\circ} \mathrm{C}}{\rightleftarrows}} \mathrm{~A}+\mathrm{B}
$$

A
(a)

(b)

(c)

(d)

43. What form of alkene are ' A ' and ' B '?
(I) $\mathrm{R}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R} \xrightarrow{\mathrm{Na} / \mathrm{NH}_{3}} '^{\prime} \mathrm{A}^{\prime}$
(II) $\mathrm{R}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R} \xrightarrow[\text { or } \mathrm{H}_{2} / \mathrm{Pd} / \mathrm{BaCO}_{3}]{\mathrm{H}^{2} / \mathrm{C}} \mathrm{B}^{\prime}$

A
(a) cis

B

(b) trans
(c) cis
(d) trans

What are A, B and C as major products?
A
B

C

(a)

(b)

$\mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{CH}_{3} \mathrm{COOH}$
(c) $\mathrm{CH}_{3} \mathrm{COOH}$

$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CHO}$
(d)

$\mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{CH}_{3} \mathrm{COOH}$
45. Supply the product ' A ' and ' B ' of the following reaction

$$
\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[(\mathrm{ii}) \mathrm{Zn/H} / \mathrm{H}_{2} \mathrm{O}]{(\mathrm{i}) \mathrm{O}_{3} / \mathrm{CH}_{2} \mathrm{Cl} / 2 \mathrm{C}} \mathrm{~A}+\mathrm{B}
$$

A

B

(a) $\mathrm{CH}_{3} \mathrm{COOH}$
(b) $\mathrm{CH}_{3} \mathrm{CHO}$
(c) $\mathrm{CH}_{3} \mathrm{COOH}$
(d) $\mathrm{CH}_{3} \mathrm{CHO}$

HCOOH
НСНО
HCHO
HCOOH

SECTION 2 (Maximum Marks: 20)

This section contains FIVE (05) questions. The answer to each question is a NUMERICAL VALUE. Each question carries +4 marks for correct answer. In all other cases zero (0) mark will be awarded for incorrect answer in this section.
46. At $20^{\circ} \mathrm{C}$, two balloons both have equal volume and porosity are filled to a pressure of 2 atm . One with $14 \mathrm{~kg} \mathrm{~N}_{2}$ and other with 1 kg of H_{2}. The N_{2} balloon leaks to a pressure of 0.5 atm in 1 hr . How long (in minute) \qquad ..) will it take for H_{2} balloon to reach a pressure of 0.5 atm .
47. For gaseous homogeneous reaction
$2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \rightleftharpoons 2 \mathrm{C}(\mathrm{g})+2 \mathrm{D}(\mathrm{g})$
$\Delta \mathrm{G}^{\mathrm{o}}=0.693 \mathrm{RT}$ at TK. Find Kp for the reaction in $\mathrm{kPa}\left[1 \mathrm{k} \mathrm{Pa}=10^{3} \mathrm{~Pa}\right]$
48. A gas is heated in a cyllinder fitted with a nozzle from $27^{\circ} \mathrm{C}$ for 20 minutes. It is found that $\frac{2}{3} \mathrm{rd}$ of the original gas is diffused out through the nozzle. What would be the difference in temperature (give your answer in terms of multiples of 100 K) between initial and final states?
49. Two vessels of equal volume are connected to each other by a value of negligible volume. One of the
 The container that has N_{2} and I_{2} is heated to temperature T_{2} while the evacuated container is heated $T_{2} / 3$. The value is now opened. Calculate the mass of N_{2} in container (B) after a very long time I_{2} sublimes at T_{2}. (report your answer in nearst integer form in grams)
50. In a container of volume 1 litre 10^{23} gas molecules are present at the r . m. s. speed equal to $10^{3} \mathrm{~m} / \mathrm{s}$. Determine the total kinetic energies of the gas molecules in kJ in nearest possible integers.

Given : $\mathrm{N}_{\mathrm{A}}=6 \times 10^{23}$ and mass of one molecule $=10^{-22} \mathrm{gm}$

PART - III MATHEMATICS

SECTION 1 (Maximum Marks: 80)

This section contains TWENTY (20) questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONLY ONE is correct. Each question carries $\mathbf{+ 4} \mathbf{~ m a r k s}$ for correct answer and $\mathbf{- 1}$ mark for wrong answer.
51. If $\int f(x) d x=F(x)$, then $\int x^{3} f\left(x^{2}\right) d x$ is equal to
(a) $\frac{1}{2}\left[x^{2}\{F(x)\}^{2}-\int\{F(x)\}^{2} d x\right]$
(b) $\frac{1}{2}\left[x^{2} F\left(x^{2}\right)-\int F\left(x^{2}\right) d\left(x^{2}\right)\right]$
(c) $\frac{1}{2}\left[x^{2} F(x)-\frac{1}{2} \int\{F(x)\}^{2} d x\right]$
(d) None of the above
52. $\int \frac{x^{2}-1}{x^{3} \sqrt{2 x^{4}-2 x^{2}+1}} d x$ is equal to
(a) $\frac{\sqrt{2 x^{4}-2 x^{5}+1}}{x^{2}}+C$
(b) $\frac{\sqrt{2 x^{4}-2 x^{2}+1}}{x^{3}}+C$
(c) $\frac{\sqrt{2 x^{4}+2 x^{2}+1}}{x}+C$
(d) $\frac{\sqrt{2 x^{4}-2 x^{2}+1}}{2 x^{2}}+C$
53. $\int \tan ^{4} x d x=A \tan ^{3} x+B \tan x+f(x)$, then
(a) $A=\frac{1}{3}, B=-1, f(x)=x+C$
(b) $A=\frac{2}{3}, B=-1, f(x)=x+C$
(c) $A=\frac{1}{3}, B=1, f(x)=x+C$
(d) $A=\frac{2}{3}, B=1, f(x)=-x+C$
54. $\int \frac{e^{\tan ^{-1} x}}{\left(1+x^{2}\right)}\left[\left(\sec ^{-1} \sqrt{1+x^{2}}\right)^{2}+\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\right] d x,(x>0)$ is equal to
(a) $e^{\tan ^{-1} x} \cdot \tan ^{-1} x+C$
(b) $\frac{e^{\tan ^{-1} x} \cdot\left(\tan ^{-1} x\right)^{2}}{2}+C$
(c) $e^{\tan ^{-1} x} \cdot\left(\sec ^{-1}\left(\sqrt{1+x^{2}}\right)\right)^{2}+C$
(d) $e^{\tan ^{-1} x} \cdot\left(\operatorname{cosec}^{-1}\left(\sqrt{1+x^{2}}\right)\right)^{2}+C$
55. The area enclosed by the curve $|y|=\sin 2 x$, when $x \in[0,2 \pi]$ is
(a) 1 sq unit
(b) 2 sq units
(c) 3 sq units
(d) 4 sq units
56. The value of $\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} d x$ is equal to
(a) $1 / 2$
(b) $1 / 3$
(c) $1 / 4$
(d) None of these
57. $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\int_{2}^{\sec ^{2} x} f(t) d t}{x^{2}-\frac{\pi^{2}}{16}}$ is equal to
(a) $\frac{8}{\pi} f(2)$
(b) $\frac{2}{\pi} f(2)$
(c) $\frac{2}{\pi} f\left(\frac{1}{2}\right)$
(d) $4 f(2)$
58. The value of the definite integral $\int_{0}^{\infty} \frac{d x}{\left(1+x^{a}\right)\left(1+x^{2}\right)}(a>0)$ is
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{2}$
(c) π
(d) Some function of a
59. Let $I_{n}=\int \tan ^{n} x d x,(n>1) \cdot I_{4}+I_{6}=a \tan ^{5} x+b x^{5}+C$, where C is a constant of integration, then the ordered pair (a, b) is equal to
(a) $\left(-\frac{1}{5}, 0\right)$
(b) $\left(-\frac{1}{5}, 1\right)$
(c) $\left(\frac{1}{5}, 0\right)$
(d) $\left(\frac{1}{5},-1\right)$
60. Statement I The value of the integral $\int_{\pi / 6}^{\pi / 3} \frac{d x}{1+\sqrt{\tan x}}$ is equal to $\pi / 6$.

Statement II $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
(a) Statement I is true; Statement II is true; Statement II is a true explanation for Statement I
(b) Statement I is true; Statement II is true; Statement II is not a true explanation for Statement I
(c) Statement I is true; Statement II is false
(d) Statement I is false; Statement II is true
61. The area bounded by $y=2-|2-x|$ and $y=\frac{3}{|x|}$ is
(a) $\frac{4+3 \ln 3}{2}$
(b) $\frac{19}{8}-3 \ln 2$
(c) $\frac{3}{2}+\ln 3$
(d) $\frac{1}{2}+\ln 3$
62. If the area bounded between X -axis and the graph of $y=6 x-3 x^{2}$ between the ordinates $x=1$ and $x=a$ is 19 sq units, then ' a ' can take the value
(a) 4 or -2
(b) two values are in $(2,3)$ and one in $(-1,0)$
(c) two values one in $(3,4)$ and one in $(-2,-1)$
(d) None of the above
63. The area bounded between the parabolas $x^{2}=\frac{y}{4}$ and $x^{2}=9 y$ and the straight line $y=2$ is
(a) $20 \sqrt{2}$
(b) $\frac{10 \sqrt{2}}{3}$
(c) $\frac{20 \sqrt{2}}{3}$
(d) $10 \sqrt{2}$
64. The area bounded by the curves $y=\cos x$ and $y=\sin x$ between the ordinates $x=0$ and $x=\frac{3 \pi}{2}$ is
(a) $(4 \sqrt{2}-2)$ sq units
(b) $(4 \sqrt{2}+2)$ sq units
(c) $(4 \sqrt{2}-1)$ sq units
(d) $(4 \sqrt{2}+1)$ sq units
65. The area of the region enclosed by the curves $y=x, x=e, y=\frac{1}{x}$ and the positive X -axis is
(a) 1 sq unit
(b) $\frac{3}{2}$ sq units
(c) $\frac{5}{2}$ sq units
(c) $\frac{1}{2}$ sq unit
66. The order of the differential equation of family of curves $y=C_{1} \sin ^{-1} x+C_{2} \cos ^{-1} x+C_{3} \tan ^{-1} x+C_{4} \cot ^{-1} x$ (where C_{1}, C_{2}, C_{3} and C_{4} are arbitrary constants) is
(a) 2
(b) 3
(c) 4
(d) None of these
67. The differential equation corresponding to the family of curves $y=e^{x}(a x+b)$ is
(a) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-y=0$
(b) $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=0$
(c) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0$
(d) $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-y=0$
68. The function $y=f(x)$ is the solution of the differential equation $\frac{d y}{d x}+\frac{x y}{x^{2}-1}=\frac{x^{2}+2 x}{\sqrt{1-x^{2}}}$ in $(-1,1)$ satisfying $f(0)=0$. Then, $\int_{-\frac{\sqrt{3}}{2}}^{\sqrt{3} / 2} f(x) d x$ is
(a) $\frac{\pi}{3}-\frac{\sqrt{3}}{2}$
(b) $\frac{\pi}{3}-\frac{\sqrt{3}}{4}$
(c) $\frac{\pi}{6}-\frac{\sqrt{3}}{4}$
(d) $\frac{\pi}{6}-\frac{\sqrt{3}}{2}$
69. If a curve $y=f(x)$ passes through the point $(1,-1)$ and satisfies the differential equation, $y(1+x y) d x=x d y$, then $f\left(-\frac{1}{2}\right)$ is equal to
(a) $-\frac{2}{5}$
(b) $-\frac{4}{5}$
(c) $\frac{2}{5}$
(d) $\frac{4}{5}$
70. Let the population of rabbits surviving at a time t be governed by the differential equation $\frac{d p(t)}{d t}=\frac{1}{2} p(t)-200$. If $p(0)=100$, then $p(t)$ is equal to
(a) $400-300 e^{\frac{t}{2}}$
(b) $300-200 e^{\frac{t}{2}}$
(c) $600-500 e^{\frac{t}{2}}$
(d) $400-300 e^{-\frac{t}{2}}$

SECTION 2 (Maximum Marks: 20)

This section contains FIVE (05) questions. The answer to each question is a NUMERICAL VALUE. Each question carries +4 marks for correct answer. In all other cases zero (0) mark will be awarded for incorrect answer in this section.
71. If $\int \frac{(2 x+3) d x}{x(x+1)(x+2)(x+3)+1}=C-\frac{1}{f(x)}$, where $f(x)$ is of the form of $a x^{2}+b x+c$, then $(a+b+c)$ equals to \qquad
72. The integral $\int_{2}^{4} \frac{\log x^{2}}{\log x^{2}+\log \left(36-12 x+x^{2}\right)} d x$ is equal to
73. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the X -axis is
74. Number of straight lines which satisfy the differential equation $\frac{d y}{d x}+x\left(\frac{d y}{d x}\right)^{2}-y=0$ is
75. If $\frac{d y}{d x}=y+3>0$ and $y(0)=2$, then $y(\log 2)$ is equal to

SOLUTION OF AITS JEE(MAIN) PART TEST - 3

PHYSICS

1.	(a)	2.	(c)	3.	(c)	4.	(d)
5.	(c)	6.	(b)	7.	(b)	8.	(c)
9.	(b)	10.	(d)	11.	(c)	12.	(a)
13.	(c)	14.	(d)	15.	(c)	16.	(c)
17.	(b)	18.	(a)	19.	(c)	20.	(c)
21.	(10)	22.	(6.25)	23.	(0.16)	24.	(250)
25.	(0.76)						

CHEMISTRY

26. (b)

Water will change to vapour which will press Hg in L side whereby the level will be raised in R side till $\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ equilibrium is reached.
27. (d)
28. (d)
29. (b)
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=\frac{1.59 \times 1.59}{1.41}=1.79$
30. (b)
31. (b)
$\mathrm{K}_{\mathrm{c}}>10^{3} \Rightarrow$ very high yield
$\mathrm{K}_{\mathrm{c}}<10^{-3} \Rightarrow$ negligible yield
32. (d)
33. (d)
34. (b)
35. (d)

36. (d)
37. (d)
38. (d)
39. (d)

There is no super ideal gas. It is a case of a real gas. At low pressure the deviation is negative from ideal behaviour while at high pressure the deviation is positive.
40. (b)
41. (a)
42. (c)

It is a reaction of isomerisation where high temperature gives simple branched compounds and the reverse reaction takes place at room temperature. Pressure of approximately 35 atm is maintained.
43. (d)
$\mathrm{Na} / \mathrm{NH}_{3}$ reaction (Birch reaction) give trans-isomer while $\mathrm{H}_{2} / \mathrm{Pd} / \mathrm{BaCO}_{3}$ gives cis-isomer.
44. (b)
$\mathrm{CH}_{3} \mathrm{COOH}$ in all cases.
45. (b)

46. (16)

At constant V and T
For $\mathrm{N}_{2}, \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{\mathrm{w}_{1}}{\mathrm{w}_{2}}$
$\frac{2}{0.5}=\frac{14}{\mathrm{w}_{2}} \Rightarrow \mathrm{w}_{2}=3.5 \mathrm{~kg}$ wt. of N_{2} diffused $=14-3.5=10.5 \mathrm{~kg}$
For H_{2}
$\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{\mathrm{w}_{1}}{\mathrm{w}_{2}}$
$\frac{2}{0.5}=\frac{1}{\mathrm{w}_{2}} \Rightarrow \mathrm{w}_{2}=0.25 \mathrm{~kg}$
weight of H_{2} diffused $1-0.25=0.75 \mathrm{~kg}$.
$\frac{\mathrm{w}_{\mathrm{H}_{2}}}{\mathrm{w}_{\mathrm{N}_{2}}} \times \frac{\mathrm{t}_{\mathrm{N}_{2}}}{\mathrm{t}_{\mathrm{H}_{2}}}=\frac{\mathrm{r}_{\mathrm{H}_{2}}}{\mathrm{r}_{\mathrm{N}_{2}}}=\sqrt{\frac{\mathrm{M}_{\mathrm{N}_{2}}}{\mathrm{M}_{\mathrm{H}_{2}}}}$
47. (50)
$\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{RT} \ln \mathrm{K}^{\mathrm{o}} \mathrm{p}=0.693 \mathrm{RT}$
$\Rightarrow 1 / \mathrm{K}^{\circ} \mathrm{p}=2 \Rightarrow \mathrm{~K}^{\mathrm{o}} \mathrm{p}=0.5 \mathrm{bar}$
$=0.5 \times 10^{5}=5 \times 10^{4} \mathrm{~Pa}=50 \mathrm{k} \mathrm{Pa}$
48. (6)

From $\mathrm{PV}=\mathrm{nRT} \Rightarrow \mathrm{nT}=\frac{\mathrm{PV}}{\mathrm{R}} \Rightarrow \mathrm{nT}=\operatorname{constant}($ at constant $\mathrm{P}, \mathrm{V})$
$\Rightarrow \mathrm{n}_{1} \mathrm{~T}_{1}=\mathrm{n}_{2} \mathrm{~T}_{2} \Rightarrow \frac{\mathrm{n}_{1}}{\frac{1}{3} \mathrm{n}_{1}}=\frac{\mathrm{T}_{2}}{300} \Rightarrow \mathrm{~T}_{2}=900 \mathrm{~K} \Rightarrow \mathrm{~T}_{2}-\mathrm{T}_{1}=600 \mathrm{~K}=6$ Hundred Kelvin
49. (2)

Number of moles of N_{2} in vessel
(A) at $\mathrm{T}_{1}=\frac{2.8}{2.8}=0.1$

Number of moles of I_{2} in
$\operatorname{Vessel}(A)$ at $T_{1}=\frac{12.7}{254}=0.05$

Vessel (A) is heated to T_{2} the evacuated vessel (B) is heated to $T_{2} / 3$. On opening stop-cock I_{2} sublimes in (A) and its vapours condense to solid I_{2} in (B). Let the number of moles of N_{2} moved from (A) to (B) at equilibrium be x .

Pressure of N_{2} in $(A)=$ Pressure of N_{2} in $(B)=\frac{(0.1-x) R_{2}}{V}=\frac{x R T_{2}}{3 V}$
One solving, $\mathrm{x}=0.075$
\therefore Mass of N_{2} is vessel $(\mathrm{A})=0.7 \mathrm{~g}$
Mass of N_{2} in vessel $(\mathrm{B})=2.1 \mathrm{~g}$
50. (5)

No. of moles of gas molecules present $=\frac{10^{23}}{6 \times 10^{23}}=\frac{1}{6}$.
Mol wt. of gas $=6 \times 10^{23} \times 10^{-22}=60$ or $u_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}$

$$
\mathrm{u}_{\mathrm{rms}}^{2}=\frac{3 \mathrm{RT}}{\mathrm{M}} \text { or } \frac{\mathrm{Mu}_{\mathrm{rms}}^{2}}{3}=\mathrm{RT}
$$

Per mol, $\mathrm{KE}=\frac{3}{2} \mathrm{RT}=\frac{3}{2} \times \frac{\mathrm{Mu}_{\text {ms }}^{2}}{3}=\frac{1}{2} \mathrm{Mu}_{\text {rms }}^{2}$
\therefore for $\frac{1}{6}$ mol, total KE $=\frac{1}{2} \times \mathrm{M} \times \mathrm{u}_{\text {rms }}^{2} \times \frac{1}{6}$
$=\frac{1}{2} \times 60 \times 10^{10} \times \frac{1}{6} \operatorname{Arg}=5 \times 10^{3} \mathrm{~J}=5 \mathrm{~kJ}$

MATHS

51. (b)
52. (d)
53. (a)
54. (c)

Note that $\sec ^{-1} \sqrt{1+x^{2}}=\tan ^{-1} x ; \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=2 \tan ^{-1} x$,

For $x>0$
$\Rightarrow I=\int \frac{e^{\tan ^{-1} x}}{1+x^{2}}\left\{\left(\tan ^{-1} x\right)^{2}+2 \tan ^{-1} x\right\} d x$,
Put $\tan ^{-1} x=t=\int e^{t}\left(t^{2}+2 t\right) d t=e^{t} \cdot t^{2}=e^{\tan ^{-1} x}\left(\tan ^{-1} x\right)^{2}+C$
55. (d)
56. (a)
57. (a)
$\lim _{x \rightarrow \frac{\pi}{4}} \frac{\int_{2}^{\sec ^{2} x} f(t) d t}{x^{2}-\frac{\pi^{2}}{16}}=\lim _{x \rightarrow \frac{\pi}{4}} \frac{f\left(\sec ^{2} x\right) \cdot 2 \sec ^{2} x \tan x-0}{2 x} \quad$ (applying L'Hospital rule)
$=\frac{f(2) \cdot 4}{\pi / 2}=\frac{8 f(2)}{\pi}$
58. (a)
59. (c)
60. (d)
61. (b)
62. (c)
63. (c)
64. (a)
65. (b)
66. (c)

Here, $y=C_{1} \sin ^{-1} x+C_{2} \cos ^{-1} x+C_{3} \tan ^{-1} x+C_{4} \cot ^{-1} x$
$\Rightarrow y=C_{1} \sin ^{-1} x+C_{2}\left(\frac{\pi}{2}-\sin ^{-1} x\right)+C_{3} \tan ^{-1} x+C_{4}\left(\frac{\pi}{2}-\tan ^{-1} x\right)$
$=\left(C_{1}-C_{2}\right) \sin ^{-1} x+\left(C_{3}-C_{4}\right) \tan ^{-1} x+\left(C_{3}-C_{4}\right) \frac{\pi}{2}$
There are only two independent arbitrary constant order of the differential equation is 2 .
67. (b)
68. (b)
69. (d)
70. (a)
71. (5)
72. (1)
73. (9)
74. (2)
75. (7)

